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SALEM NUMBERS OF NEGATIVE TRACE 

C. J. SMYTH 

ABSTRACT. We prove that, for all d > 4, there are Salem numbers of degree 2d 
and trace -1, and that the number of such Salem numbers is > d/ (log log d)2. 
As a consequence, it follows that the number of totally positive algebraic in- 
tegers of degree d and trace 2d - 1 is also > d/ (log log d)2. 

1. INTRODUCTION 

Recall that a Salem number is an algebraic integer T > 1, of degree ? 4, all of 
whose conjugates, apart from T and T1, have modulus 1. How small can the trace 
of a Salem number be? It is known that all Salem numbers of degree up to 18 have 
trace at least -1(Proposition 6.1). 

The aim of this paper is to study the set Sd of Salem numbers of degree 2d and 
trace -1. This set is tabulated in Table 1 for 2d < 14. It is easy to see that Sd is 
finite for all d. In order to state our main result, we define the subset Sd of Sd to 
be those Salem numbers Td,m with minimal polynomial 

(1) Pd,m (Z) = (z2d (z2 _ - 1) + z2(d-m) + Z2(m+l) _ z2 _ z + 1) / (z _ 1)2. 

Here m must be in the range 1 < m < [(d - 1)/2j, and be such that Pd,m is 

irreducible. Then we have 

Theorem 1.1. For every d ? 4, Sd is non-empty. Further, for d 5, S is 
non-empty, and, for d sufficiently large, 

(2) >S | > OS' | 0.1387d 
(2) ISd- ISdl > (log log d)2 

so that certainly SdI -> oo as d - oo. 

In fact, it is likely that ISdl grows at least exponentially with d. 
The Salem number Td,m can in fact be associated with a particular tree, the 

three-armed star-like tree with 1, 2rm and 2(d - m - 1) edges on its arms, in a 
manner described in [MRS]. 

As a consequence of the theorem, we obtain a similar result for the set Ad of 
totally positive (i.e. all conjugates positive) algebraic integers of degree d and trace 
2d - 1. We define the subset A'd of Ad to be those aYd,m in Ad with minimal 
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polynomial 

(3) 
Qd,m (y) = yd _(2d - 1) yd-I 

d-1 (2- min(d-m-2,k-2) 2d-2m 

+ S: (_1)k 
d- 

~(2d 
- 

k) - 5 (d 2-3-i )2m-k+l+i\' 
k=2 i=max(O,k-m-1) 

+ (_)d. 

Again, m must satisfy 1 ? m ? [(d - 1)/2j and be such that Qd,m is irreducible. 
Then 

Corollary 1.2. For every d > 1, Ad is non-empty. Also A' is non-empty for 
d > 5 and, for d sufficiently large, 

(4) |Ad | > [A' [ > 0. 1387d 
dl> 

(log log d)2 

so that certainly lAdl - oo as d - oo. 

The proofs of Theorem 1.1 and Corollary 1.2 are based on the following factor- 
ization of Pd,m: 

d-I 
Theorem 1.3. For d ? 5 and 1 < nm <m 2 1j Pd,, (z) factors as the product of 

the minimal polynomial of a Salem number Td,m and a (possibly trivial) cyclotomic 
polynomial, which is 

{ C(z)C12 (Z) if d-3mod6 andm =_ Ilmod6, 
? C(z)C30(Z) if d 4mod15 andm =_ or2modl5, 
C (z) otherwise. 

Here C12 (z)=z4 z2 +1C(Z) P (z) z8 + z7 - z5 z4 -z3 + z + and 

C(z) = (z ) ) (z21) ( =) 

where gi = gcd (d, 2nm + 1), 92 = gcd (2d + 1, 2m + 3), 93 = gcd (2d + 1, m) and 
94 = gcd (92,93) (= 1 or 3). 

From the theorem one can readily read off the trace of Td,m. It is equal to 
-1 + 1 + n2 + n3 + n4, where n1 = 1 if 91 > 1, and 0 otherwise, n2 = 1 if 92 > 1, 
and 0 otherwise, n3 = 1 if 93 > 94, and 0 otherwise, and n4 = 1 if d- 4mod 15 
and m 1 or 2 mod 15, and 0 otherwise. In particular, Td,m has trace -1 iff it has 
degree 2d, i.e. iff Pd,m is irreducible. 

Of course, we are particularly interested in the pairs d, m for which Pd,m is 
irreducible: 

Corollary 1.4. For d > 5, 1 < m < d2 I, Pd, has the nth cyclotomic 

polynomial Cn as a factor iff 

(i) n odd 3, d0 modn, m _- modn 
2 or 

n-i n- 3 
(ii) n odd 3, d- 2 modn, nm =0or 2 modn 

2 2 or 
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(iii) n =12, d3 mod 6, m I mod 6 
or 

(iv) n =30 d4 mod 15, m Ilor 2 mod 15, 
and in no other case. In particular, putting 

Md {<m 1 n m < [(d - 1)/2j, m 
P 

2 modp for all odd primes pId, 

M O or q mod q for all odd primes q12d + 1}, 
2 

Pd,m is irreducible iff 

{m E Md if d # 4 mod 15, 
mrn E Md nO{m m 1 or 2mod15} if d_4mod15. 

The polynomial Qd,m is defined by Qd,m(z + 1/z + 2) := z-dPd,m(Z). Its fac- 
torization can thus be written down from the factorization of Pd,m. In particular, 
Qd,m is irreducible iff Pd,m is irreducible. 

The polynomial Pd,m (z) can also be written 
2d + z2d-1 _z2d-3-2Z2d-4 _ . _(2n -2) z 

- (2m - 1) (z2d-(2m+1) + z2d-(2m+2) + . + z2m+2 + z2m+1) 

- (2m -2) z2m - -2z4-Z3 + Z + 1. 

One way in which Pd,m (or, equivalently, Td,m) arises naturally is the following: 
the smallest limit point in the set of Pisot numbers is p = 2 (1 + V5), which is a 
limit of Pisot numbers ?m < p with minimal polynomial 

(Z2m (2_z 1) + 1) / (Z 1) (m? 1). 

Then the standard construction ([Sa], [BDGPS]) proving that every Pisot number 
is a limit from below of Salem numbers shows that ?m is a limit from below of the 
Td,m , as d -> oo. 

The factorization of Pd,m described here was first conjectured on the basis of 
computational evidence obtained for d < 40 using Maple. 

2. STANDARD LEMMAS 

Let wn = e2ti/n. Then we need 

Lemma 2.1. For all natural numbers n, 
(a) -Wn is a conjugate of wn iff n is a multiple of 4; 
(b) -U4 is a conjugate of wn iff n is divisible by 2 but not by 4; 
(c) w( is a conjugate of wn iff nZ is odd. 

The proof is an easy exercise. We also need the standard estimates 

Lemma 2.2. Forn ? 3 

171 ( -)> eY log log n + 2.50637/ log log n 
p prime 

say, and for n > 26 

w (n) < log n =h (n) 
log log n - 1. 1714 
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say. Here w (n) is the number of distinct prime factors of n, and -y is Euler's 
constant 0.577.... 

For the proofs, see [RS], p.72, and [Robin], respectively, or [MSC]. 
We also need a (presumably well-known) crude sieving estimate: 

Lemma 2.3. Let D be a finite set of pairwise relatively prime integers, all at least 
2, and for each p in D let 1Zp be a set of rp < p residue classes modp. Then the 
number N of positive integers m < M which are # xp modp for any xp in IRP and 
any p E D satisfies 

N-Ml tJ 1- rp < H (I + rp) . 
p cD p pcD 

The proof is an easy application of the Principle of Inclusion and Exclusion and 
the Chinese Remainder Theorem. Alternatively, it is slight extension of the results 
of [HR], pp. 30-31. 

3. PROOF OF THEOREM 1.3 

We first need 

Lemma 3.1. For d ? 5 and 1 < m < [(d - 1)/2j the polynomial Pd,m has a real 
root Td,m > 1. All other roots are on lzl = 1 except for -d . For fixed d ? 5 the 
Td,m (1 < m < [(d - 1)/2j) are all distinct. For d,m in this range, Pd,m(1) 0 0. 

Proof. Consider 

Rd,m (z) := (z-1) Pd,m (Z) 

= z2d (z2 _ z - 1) + Z2(d-m) + Z2(m+l) _ Z2 _ z + 1. 

Then by a standard Rouche's Theorem argument to be found in [Sa], Rd,m has at 
most one zero in lzl > 1. Further, if R"m (1) < 0 then Rd,m will have exactly one 
zero in Iz > 1. Now 

Rd'm (1) = 2 (4m (m + 1) + 1 -2 (2m- 1) d) < 0 

if 

d 4m (m+1)?1] f 5 for m=1,2,3 
| 2(2m -1) J m +2 form 4 

This shows that Rd,m has one root in Iz > 1 for 1 < n <m d - 2 (d > 5). 
Now Pd,d-m-l = Pd,m, so that the Td,m can, for fixed d, be distinct only for 

m <? d-m- 1, i.e. m <? [(d- 1)/2j. Indeed, for 1 <m n' < mn < [(d- 1)/2j and 
T := Td,mi 

Rd,m' (T) = Rd,m' (T) - Rd,m(T) - T2(d-m/) + T 2(m/+1) - T2(d-m) - T2(m+l) 

- (T2(m-m) -1)(-T2(m/+1) + T2(d-m)) 

> 0. 

Thus the Td,m are distinct for d fixed and 1 < m ? [(d - 1)/2j. 
We now prove the theorem, or rather, Corollary 1.4, which is really an alternative 

formulation of Theorem 1.3. 
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We first write Rd,m (Z) /z = 0 in the form 

u-z- 1+ - 
(5) _Z 2d z 

- U Z 
z 

where u = z We assume that z = w7n is a zero of Pd,m and so of (5), and, in 
order to use Lemma 2.1, separate three cases: 

(a) The case 41n. Here z = -Wn is also a root of (5), so that 

1 1 
u-z-1+- -u+z-1-- 

(6) _z2d = Z 

----1 +Z --+ --1-z 
U Z U Z 

which gives 

(7) 2(z--)=u--. 

To solve (7), put z = e27i/4k say, with conjugates zr - e27ir/4k where (r, 4k) 1. 
Hence, applying the Galois element z lr, zr, we get 

2 (zr - z-r) = (ur - U-r) 

so that 

2sn irr(2m +1) (8) 2 |sin 2k 1 = |sin ( 1. (8) 
~~~~~~2k 2k 

Thus there can be no r with (r, 2k) = 1 and 
k 

< r k. However, the examples 
3 

(r, k) = (1, 1), (2t - 1, 2t) and (2t - 1, 2t + 1) for t ? 2 show that every value of k 

except k = 3 is impossible. For k = 3, z = e2-ri/12 and 2 z - ) = 2i, (7) has 

the unique solution u = i = e27i(2m+1)/12, giving 2m+ 1 _ 3mod 12, m _ lmod6. 
Then (5) gives z2d 1 2d--6mod12, d-3mod6. 

(b) The case 21n, 4 t n. Starting with (5), use Lemma 2.1(b) to replace z by -z2 

u by -u2 and eliminate z2d to obtain 

(9) (_z2d) = (Z) = (_z2) = - (-1 2 Z)- 

-- + Z 2 2--Z2 

Clearing the denominators gives a plane algebraic curve f (u, z) = 0, independent 
of d. Since then also f (_u2, _z2) = 0, the pairs (u, z) of interest lie on both curves. 
To find all possible (u, z) pairs, we use a Maple program [Sm3] which uses a version 
of the Euclidean algorithm to find all such intersection points, with multiplicities. 
The program tells us that the only such intersection points with z and u nth roots 
of unity with 2In, 4 t n are the pairs (u,z) = (a3,c ) and (a5,c ), where a is a 
primitive 30th root of unity. Both points have multiplicity one. Hence 2m + 1 = 3 
or 5, m = 1 or 2. [Alternatively, one can of course use the classical resultant method 
to find z, say, and then back-substitute to find the corresponding values of u. Doing 
this, one finds that the cyclotomic factors of this resultant are C3, (z-1)8, (z + 1)8 
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and (z2 + 1)8, from which the pairs (z, u) can again be found.] Then, using (5), we 
find that, when m = 1, u = Z3 

z2d = 3- +ll/z = 8 
z-3 - 1 + z 

on routine simplification, using C30 (z) = 0. Again, for m = 2, u = z5I (4) gives 
_z2d = -z8again. Hence 2d = 8 mod 30, d = 4 mod 15, for m = 1 or 2. 

(c) The case n odd. In a way similar to the previous case, apply Lemma 2.1(c) 
to (5), and also replace z by z2, to obtain 

_(_z2d)2 = _ () (z2d= 2 
' - 

I~~~~~~ -1z + Z2 
Clearing denominators this time gives 

(U- 1)2 (UZ2 _ 1) (z-u) (z + 1) (z- 1) = 0. 

Since neither ?1 is a zero of Pd,m, we need consider only the subcases where one 
of the first three factors is 0: 

(i) u =1. Here u - =1 m. I =m 2 modn. Then, from (5), z2 =1, 

zd = 1i i.e. d =0mod n. 
-2 2m 3 n__ 3_d (ii)u=z Iz + m mrod n,and, from (5),z 1d= 

2~~~~~~~~~ 
2 modn. 
(iii) U = z, z2m = II zm = 11 m = Omodn, and, from (5), z2d+1 -1 d _ 

n-i 
2 modn. 
This completes the proof of Corollary 1.4. Theorem 1.3 now follows readily by 

collecting together all the cyclotomic factors Cn (z) of Pd,m for n odd, and noting 
that gcd(91,92) = gcd(91,93) = 1, and g9 = gcd(92,93) = 1 or 3. 

4. PROOF OF THEOREM 1.1 

For the proof, we need to find a positive lower bound for ISd . First we show 
that 

Lemma 4.1. The set Sd is non-empty for 5 < d < B := 7.98 x 1012. 

Proof. First, direct Maple computation of the set Md shows that Md, and hence 
Sd is non-empty for 5 < d < 2998. The set Md is shown for d < 60 in Table 
2 (at the end of this paper). Next, we find, again using Maple, that the primes 
M' E {5,29,53,89,113,173,509,659,743,809,1013,1499} have the property that, 
for each of these primes in', the numbers 2nm' + 1 and 2nm' + 3 are also both prime. 
Further, there is no repeated prime in the multiset of all such in', 2m' + 1, 2m' + 3 
for m' in the above set of primes. 

Now suppose that d > 2999. Then, by Lemma 3.1, the polynomials Pd,m for 
fixed d and 1 < m < 1499 = (2999 - 1)/2 < [(d - 1)/2j all are divisible by the 
minimal polynomials of distinct Salem numbers. I claim that for m equal to at 
least one m' on the above list, M' E Md, so that Md and hence Sd is non-empty. 
For, if not, then, from the definition of Md, either m'l 2d + 1 or (2m' + 3)12d + 1 or 
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(2m' + 1)Id, implying that m" :m' or 2m' + 1 or 2m' + 3 divides d(2d + 1). But 
now 

17 m" > Jm' = 4.08 x 1027 > 1.27 x 1026 = B(2B + 1) > d(2d + 1) 

gives a contradiction. 

We next find a lower bound for ISdl for large d, i.e. for d > B. To do this, we 
apply Lemma 2.3, using the description of the integers m in Sd given by Corollary 
1.4. 

First consider the case d 4 mod 15. Take D to be the set of odd primes 
dividing d (2d + 1), and 1Zp {-(p- 1)} if p is an odd prime dividing d, and 

q= {0, -(q - 3)} if q is a prime dividing 2d + 1. Put rp = L7Z1. Then rp = 1 for 
pld, r3 = 1 if 312d + 1; otherwise rq = 2 if qj2d + 1, q 7- 3. Hence, applying Lemma 
2.3 with M = [(d - 1)/2j, we obtain 

(10) SL'd I ? M fi (I 1) u I( _ - 2w(d)3w(2+) 

pId3 P qI2d+1 
q 

q03 

Here w (r) is the number of prime factors of r, and d3 = 3d if 312d + 1, while 
d3= d, otherwise. 

Similarly, for the case d _ 4 mod 15 we have 2d + 1 _ 9 mod 15, so 312d + 1, but 
3 t d, 5 t d, 5 t 2d + 1. Thus there are seven excluded residue classes mod 15: m 
0,1, 2,3,6,9,12 mod 15, and the lemma gives 

(11) Sdl M l (M - 1) n - q) (- - 2w(d)3w(2d+) (1 + 7). 
p(d q(2d+1 

q 1 
q03 

We now apply Lemma 2.2 to (10) and (11). Thus for d # 4 mod 15, and 3 t 2d+ 1 
we get 

ISId ? Mf i- )y (1-~ 2) 2w(d) 3w (2d+l) 

p(dq(q+ pid qI2d+1 ( \ 

qprime 

(12) > Mf (d (2d + 1)) (2d + 1) (I - 1 x 0.66 - 2h(d) 3h(2d?1) 

as ( (-( 1)2) > 0.66. Now if 32d + 1 we obtain similarly 

qprime 

22Mf (d(2d + 1))f (2d + 1) x 0.66 - 2h(d)3h(2d?1) 

which is stronger than (12). Hence (12) certainly holds for d b 4 mod 15. 
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For d-4 mod 15, we obtain, from (11), using 312d + 1 and 5 t 2d + 1, that 

ISdI ? 11 (I ) H l 15 ( 3) pld p qj2d+1 
q 

384 ( (q_1)2) (1- 42 h(d)3h(2d+l) 
q prime 

(13) > x 0.66Mf (d(2d+1))f(2d+1)- -2h(d)3h(2d?1)* 
225 3 

Hence, from (12) and (13), we have 

2h(d) 3h(2d+l) 

(14) ISdl > ciMf (d(2d + 1)) f (2d + 1) I- C2Mf (d(2d + 1)) f (2d + 1)) 

where c1 = 1.1264,c2 = 0.4224 for d _ 4mod 15, and c1 = C2 = 0.88 otherwise. 
Thus we see that for 

2h(d) 3h(2d+l) 

L(d - 1)/2J f (d(2d + 1)) f (2d + 1) 

we have IS'l > 0. A straightforward Maple calculation shows that this happens for 
d > B = 7.98 x 1012. 

Finally, from (13) and the definition of f (d) we see that, for large d, 

l> (0.88 x 2 x e- o(l) dl (loglogd 

> 0.1387d/ (log log d)2. 

5. PROOF OF COROLLARY 1.2 

First, note that, from my tables [Sml], lAd! > 0 for 1 < d < 7. For larger values 
of d, we use the correspondence r + r-1 + 2 = a. This shows that A' > 0 for all 
d, and gives the asymptotic lower bound (4). 

It remains only to show that if T has minimal polynomial Pd,m (z), then a = 

T + T-1 + 2 has minimal polynomial Qd,m (y) given by (3). Now, using (1), we can 
write 

Rd,m (Z) = Pd,m (Z) (z - 1)2 = (z2d+1 _ 1) (Z - 1) z2 (z2(d-m-1) - i) (Z2m - 1) 

so that 

Pd,m (Z) zd+1/2 _ z-(d+l/2) zd-m-1 Z z-(d-m-1) zm - z-m 

zd z1/2 - z-1/2 z1/2 - z-1/2 z1/2 - z_ 1/2 

= U2d (X) - U2(d-m)-3 (X) * U2m-1 (X), 

where x = xft + 1/I/z and [Robins] 

Ln/21 

(15) Un (x) = E (_,)k (nk scn2k 

k=O 

is the nth Chebyshev polynomial of the second kind, with defining property 

Un(t+l/t) = - t-t+l) 
t-t-1 
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Now, for a =Tr +Tr-1 + 2 we have a = F + 1/1;FT, so that y-=a is a root of 

Qd,m (Y) = U2d (VY) - U2(d-m)-3 (/Y) * U2m-1 (X) 

which, using (15), gives (3). 

6. TABLES 

Table 1 shows that, for 2d = 8, 10, 12, 14, there are respectively 1, 3, 9, 39 elements 
of Sd. It was obtained from the tables in [Sml], using the transformation r + T-1 + 
2 = a, where a is totally positive of degree d and trace 2d - 1. Several examples 
of Salem numbers of trace -1, including the unique degree 8 example, had been 
found earlier by Boyd (personal communication). 

It is interesting to note [Sml] that there are in fact 40 totally positive algebraic 
integers of degree 7 and trace 13. All but one of them has exactly one conjugate 
> 4, giving the 39 elements of S7 mentioned above. The exception is the number 
Ol having minimal polynomial z7 _ 13Z6 + 62z5 - 135z4 + 140z3 - 67Z2 + 14z - 1, 
which has two such conjugates. For this a, the r defined by r + r-1 + 2 = a has, 
of course, two conjugates in (1, oo), so is not a Salem number. 

The results of [Sml], combined with further computation using the same method 
as in that paper, also show that 

Proposition 6.1. For 2d < 18, all Salem numbers of degree 2d have trace at 
least -1. 

This further computation consisted of an unsuccessful search for totally positive 
algebraic integers of degree d = 8 or 9 and trace < 2d - 2. There are, however, 
examples of totally positive algebraic integers of large degree d and trace < 2d - 1 
([Sm3]). Thus there may well be Salem numbers of large degree and trace < -1. 

Table 2 shows, for d < 60, the set Md of those m for which Pd,m is irreducible. 
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TABLE 1. Minimal polynomials of all Salem numbers of trace -1 
and degree 2d up to 14. 

# 2d Coefficients of z2d zd 

1 8 1 1 -1 -4 -5 
2 10 1 1 -1 -5 -9 -11 
3 10 1 1 0 -1 -1 -1 
4 10 1 1 0 -2 -4 -5 
5 12 1 1 -2 -6 -6 -3 -1 
6 12 1 1 -2 -7 -11 -14 -15 
7 12 1 1 -2 -7 -10 -11 -11 
8 12 1 1 -1 -3 -3 -3 -3 
9 12 1 1 -1 -3 -2 0 1 

10 12 1 1 -1 -4 -6 -8 -9 
11 12 1 1 -1 -5 -10 -14 -15 
12 12 1 1 0 -1 -2 -3 -3 
13 12 1 1 0 -2 -4 -5 -5 
14 14 1 1 -4 -15 -26 -31 -29 -27 
15 14 1 1 -4 -16 -32 -48 -59 -63 
16 14 1 1 -4 -17 -36 -56 -70 -75 
17 14 1 1 -3 -10 -15 -17 -17 -17 
18 14 1 1 -3 -10 -13 -8 2 7 
19 14 1 1 -3 -11 -19 -25 -28 -29 
20 14 1 1 -3 -11 -18 -20 -17 -15 
21 14 1 1 -3 -11 -17 -16 -9 -5 
22 14 1 1 -3 -12 -24 -37 -47 -51 
23 14 1 1 -3 -12 -23 -33 -39 -41 
24 14 1 1 -3 -12 -22 -29 -31 -31 
25 14 1 1 -3 -13 -28 -45 -58 -63 
26 14 1 1 -3 -13 -27 -41 -50 -53 
27 14 1 1 -2 -6 -7 -6 -5 -5 
28 14 1 1 -2 -6 -6 -2 3 5 
29 14 1 1 -2 -7 -11 -13 -12 -11 
30 14 1 1 -2 -7 -11 -14 -16 -17 
31 14 1 1 -2 -7 -10 -9 -5 -3 
32 14 1 1 -2 -7 -10 -10 -8 -7 
33 14 1 1 -2 -7 -9 -5 3 7 
34 14 1 1 -2 -7 -9 -6 0 3 
35 14 1 1 -2 -8 -16 -25 -31 -33 
36 14 1 1 -2 -8 -15 -22 -27 -29 
37 14 1 1 -2 -8 -14 -18 -19 -19 
38 14 1 1 -2 -8 -13 -14 -11 -9 
39 14 1 1 -2 -9 -19 -30 -38 -41 
40 14 1 1 -2 -9 -18 -27 -33 -35 
41 14 1 1 -1 -3 -3 -3 -4 -5 
42 14 1 1 -1 -4 -7 -10 -11 -11 
43 14 1 1 -1 -4 -6 -6 -4 -3 
44 14 1 1 -1 -4 -6 -7 -7 -7 
45 14 1 1 -1 -4 -5 -3 1 3 
46 14 1 1 -1 -4 -5 -4 -2 -1 
47 14 1 1 -1 -5 -11 -18 -23 -25 
48 14 1 1 -1 -5 -10 -15 -18 -19 
49 14 1 1 -1 -5 -9 -12 -13 -13 
50 14 1 1 -1 -6 -13 -21 -27 -29 
51 14 1 1 0 -1 -2 -3 -3 -3 
52 14 1 1 0 -2 -4 -6 -7 -7 
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TABLE 2. Values of m for which the polynomial Pd,m is irreducible, 
for d < 60. 

2d Values of m 

10 1 
12 2 
14 2 
16 1 2 3 
18 2 3 
20 1 4 
22 1 2 3 4 
24 2 3 
26 1 2 4 5 
28 1 2 4 5 6 
30 3 5 6 
32 1 2 5 7 
34 3 4 
36 2 3 5 6 8 
38 4 7 8 
40 1 3 4 5 6 8 9 
42 2 5 6 8 9 
44 2 4 7 8 
46 1 2 3 4 5 6 7 8 9 10 
48 3 5 6 8 11 
50 1 4 5 8 10 11 
52 1 2 3 4 5 7 8 9 10 11 12 
54 2 3 8 9 12 
56 1 2 4 5 7 11 13 
58 1 2 3 4 5 6 7 8 9 10 11 12 13 
60 3 5 6 8 9 11 14 
62 1 4 5 8 10 11 13 
64 2 3 4 7 8 9 12 14 
66 2 3 6 8 9 11 12 14 15 
68 4 5 7 11 13 14 
70 1 4 5 6 8 9 11 13 14 15 16 
72 2 3 5 6 8 9 11 12 14 15 17 
74 2 4 7 8 13 14 17 
76 1 3 5 6 8 10 12 13 17 18 
78 2 3 5 8 9 11 12 14 15 17 18 
80 1 4 5 8 10 11 13 14 16 19 
82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
84 2 8 9 12 14 18 
86 1 2 4 5 7 8 10 11 14 16 17 19 20 
88 1 2 3 4 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 
90 3 6 8 11 15 20 
92 1 2 4 5 7 8 10 13 16 17 19 20 22 
94 2 3 4 7 9 12 13 14 17 18 22 
96 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 
98 5 7 8 13 14 19 20 23 

100 1 3 4 5 6 8 9 10 11 13 14 15 16 18 19 20 21 23 24 
102 2 3 5 6 9 11 12 14 15 17 18 20 21 23 24 
104 4 8 13 17 22 
106 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
108 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 
110 1 4 8 10 11 13 14 19 20 23 25 26 
112 1 2 4 5 6 7 8 9 11 12 13 14 15 16 18 19 20 21 22 23 25 26 27 
114 2 3 8 12 14 17 18 24 27 
116 1 2 4 7 8 10 11 16 17 19 20 22 23 25 28 
118 1 3 4 5 6 8 10 11 12 13 15 18 19 20 22 25 26 27 
120 3 5 6 8 9 14 18 20 21 23 24 29 
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